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Abstract

This paper describes the interesting features of the recursive descent parser generator Ell

from the user’s point of view. Some of the interesting implementation aspects are discussed. The
generated parsers are extremely fast and run at speed of 55,000 tokens per second or 900,000
lines per minute on a MC 68020 processor. The outstanding features of Ell are the L-attribution
mechanism, its ability to handle non LL(1) grammars, and its comfortable error handling, which
includes error reporting, recovery, and repair.

1. Introduction

Recursive descent parsing is an established technique for the analysis of LL(1) languages
since many years. It can be implemented easily by a hand-written program or by using one of
the existing parser generators such as [DuW81, Gra88a, ReM85]. In real life applications, issues
such as good quality error recovery and high run time performance are essential. These require-
ments are rarely discussed in the literature and seldom achieved by the existing parser genera-
tors. This explains the reasons for implementing yet another LL(1) parser generator and to
describe some details of the generated code.

This paper presents how comfortable features like error recovery, error repair, and
L-attribution are implemented in the high performance parsers generated by the parser generator
Ell [Gro88, GrV88]. Ell generates recursive descent parsers from LL(1) grammars given in
extended BNF. The grammar rules may be associated with semantic actions consisting of arbi-
trary statements which are executed whenever they are passed during a left-to-right parse. An
L-attribution may be evaluated during parsing. Ell offers possibilities to resolve the LL(1)
conflicts of non LL(1) grammars. The generated parsers automatically include error reporting,
recovery, and repair. Parsers can be generated in the target languages C and Modula-2. The
parsers are extremely fast and run at speed of 55,000 tokens per second or 900,000 lines per
minute on a MC 68020 processor.

This paper addresses only the interesting features of Ell. The mechanism for L-attribution
and the error recovery are described from the user’s point of view as well as from the implemen-
tation view. We also present how LL(1) conflicts are resolved and discuss further implementa-
tion issues such as testing for set membership or the pitfalls of CASE (switch) statements. The
examples are taken from a parser for Modula-2 and also use Modula-2 as target language.

2. L-Attribution

According to [Wil79] an attribute grammar which can be evaluated during LL(1)-parsing is
called an L-attributed grammar. The notion L-attribution means that all attributes can be
evaluated in a single top-down left-to-right tree walk.

2.1. User’s View

The specification language of Ell distinguishes three kinds of grammar symbols: nontermi-
nals, terminals, and literals. Literals are similar to terminals and are denoted by strings.
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Terminals and nonterminals are denoted by identifiers. Terminals and nonterminals can be asso-
ciated with arbitrary many attributes of arbitrary types. The computation of the attribute values
takes place in the semantic action parts of a rule. The attributes are accessed by an attribute
designator which consists of the name of the grammar symbol, a dot character, and the name of
the attribute. As several grammar symbols with the same name can occur within a rule, the
grammar symbols are denoted unambiguously by appending numbers to their names. The
left-hand side symbol always receives the number zero. For every (outermost) alternative of the
right-hand side, the symbols with the same name are counted starting from one.

Example:

expr : ( [ ’+’ ] term { expr0.value := term1.value; }
| ’-’ term { expr0.value := - term2.value; }
)
( ’+’ term { INC (expr0.value, term3.value); }
| ’-’ term { DEC (expr0.value, term4.value); }
) *

.
term : fact { term0.value := fact1.value; }

( ’*’ fact { term0.value := term0.value * fact2.value; }
| ’/’ fact { term0.value := term0.value DIV fact3.value; }
) *

.
fact : const { fact0.value := const1.value; }

| ’(’ expr ’)’ { fact0.value := expr1.value; }
.

The above example specifies the evaluation of simple arithmetic expressions using one
attribute called value. The operator "*" denotes repetition zero, once, or more times. The attri-
butes have to be declared as members of a record type called tParsAttribute.

Example:

TYPE tParsAttribute = RECORD value: INTEGER; END;

2.2. Implementation

The implementation of the L-attribution in the generated parsers is very simple. As usual,
every nonterminal is analyzed by a procedure. Every procedure has one (reference) parameter
referring to the left-hand side attributes. As all attributes are declared as members of one
(record) type, one parameter suffices to pass an arbitrary number of attributes. For all right-hand
side symbols with attributes, local variables are declared. This solution provides very efficient
stacking of attributes via the usual procedure call mechanism. Stacking is necessary for the attri-
bute evaluation of recursive grammar rules.

Example:

PROCEDURE expr (...; VAR expr0: tParsAttribute);
VAR term1, term2, term3, term4: tParsAttribute;
BEGIN

...
END expr;

3. Non LL(1) Grammars

Sometimes grammars do not obey the LL(1) property. They are said to contain LL(1)
conflicts. A well-known example is the dangling-else problem of Pascal: in case of nested
it-then-else statements it may not be clear to which IF an ELSE belongs. It is very easy to solve
this conflicts in hand-written solutions. Ell handles LL(1) conflicts in the following ways:
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- Several alternatives (operator |) cause a conflict if their FIRST sets are not disjoint: the
alternative given first is selected.

- An optional part (operators [] and *) causes a conflict if its FIRST set is not disjoint from
its FOLLOW set: the optional part will be analyzed because otherwise it would be useless.

- Parts that may be repeated at least once cause a conflict if their FIRST and FOLLOW sets
are not disjoint (as above): the repetition will be continued because otherwise it would be
executed only once.

With the above rules it can happen that alternatives are never taken or that it is impossible
for a repetition to terminate for any correct input. These cases as well as left recursion are con-
sidered to be serious design faults in the grammar and are reported as errors. Otherwise LL(1)
conflicts are resolved as described above and reported as warnings.

4. Error Recovery

4.1. User’s View

The generated parsers include information and program code to handle syntax errors com-
pletely automatically and provide expressive error reporting, recovery, and repair. Every
incorrect input is "virtually" transformed into a syntactically correct program with the conse-
quence of executing only a "correct" sequence of semantic actions. Therefore the following
compiler phases like semantic analysis don’t have to bother with syntax errors. Ell provides a
prototype error module which prints messages as shown in Figure 1. Appendix 4 contains a
larger example demonstrating the behaviour of our method. Internally the error recovery works
as follows:

- The location of the syntax error is reported.

- If possible, the tokens that would be a legal continuation of the program are reported.

- The tokens that can serve to continue parsing are computed. A minimal sequence of tokens is
skipped until one of these tokens is found.

- The recovery location (restart point) is reported.

- Parsing continues in the so-called repair mode. In this mode the parser behaves as usual
except that no tokens are read from the input. Instead a minimal sequence of tokens is syn-
thesized to repair the error. The parser stays in this mode until the input token can be
accepted. The synthesized tokens are reported as inserted symbols. The program can be

Source Program:

MODULE test;
BEGIN

IF (a = ] 1 write (a) END;
END test.

Error Messages:

3, 12: Error syntax error
3, 12: Information expected symbols: Ident Integer Real String ’(’ ’+’ ’-’ ’{’ ’NOT’
3, 14: Information restart point
3, 16: Error syntax error
3, 16: Information restart point
3, 16: Repair symbol inserted : ’)’
3, 16: Repair symbol inserted : ’THEN’

Fig. 1: Example of Automatic Error Messages
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regarded as repaired, if the skipped tokens are replaced by the synthesized ones. Upon leav-
ing repair mode, parsing continues as usual.

4.2. Implementation

During LL(1) analysis the following kinds of syntax errors can occur: at the analysis of a
terminal the current (look-ahead) token can be different from the expected terminal. At the
analysis of alternatives the current token can be member of none of the FIRST sets of the possi-
ble branches. At the analysis of optional or iterated parts the current token can be member of
neither the FIRST set nor the FOLLOW set of the construct. In order to achieve good quality
error recovery, the latter test has to be performed before the analysis of an optional part and
before every iteration. This section discusses the interesting aspects of error recovery: how the
sets of expected tokens are defined, how parsing is continued after syntax errors, how error
repair works, and how an efficient implementation is achieved.

4.2.1. Expected Symbols

At the location of a syntax error, we try to report the set of expected tokens. To be able to
report the exact set of expected tokens, syntax errors have to be detected as early as possible.
Furthermore, information must be maintained during parsing because the exact sets depend on
the dynamic call hierarchy. Early detection of errors requires the knowledge of the exact FOL-
LOW sets which also depend on the call hierarchy. In order to gain efficiency, we report only
the subset of the expected tokens which can be computed at generation time. This set is neces-
sary for every potential error location. In case of a terminal the expected token is just this termi-
nal. In case of alternatives the set of expected tokens is the union of the FIRST sets of the alter-
natives. In case of optional or iterated parts the set of expected tokens is the union of the FIRST
set and of the local FOLLOW set of the construct. All the sets are computed at generation time
and stored in the generated parsers.

4.2.2. Recovery Sets

For every possible syntax error a so-called recovery set is determined containing the tokens
where parsing can continue. We present the definition of recovery sets for plain BNF, first.
Appendix 3 shows the extension to extended BNF using an attribute grammar formalism. In
case of a syntax error the situation is as follows (see Fig. 2):

- Analysis of the productions p 1, . . . , pn has started.

- Every production pi is processed by a procedure called Xi .

- Every procedure Xi calls a procedure Xi +1 to analyze a nonterminal of the right-hand side.

- Procedure Xn detects an error at position Z .

- The current call hierarchy is X 1, . . . , Xn .

p 1: X 1 → Y 11 ... X 2 Y 1j 1
... Y 1n 1

p 2: X 2 → Y 21 ... X 3 Y 2j 2
... Y 2n 2

...
pn −1: Xn −1 → Yn −1,1 ... Yn −1,in −1

Xn Yn −1,jn −1
... Yn −1,nn −1

pn : Xn → Yn 1 ... Ynin
Z Ynjn

... Ynnn

Fig. 2: Situation in case of a syntax error (pi ∈ P , Xi ∈ N , Yij ∈ V , Z ∈V )

Let us concentrate first on the situation locally in production pn . Parsing could continue at
the symbols Ynjn

, . . . , Ynnn
. The set of tokens that allow to continue parsing, or in other words
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the local recovery set Rn is therefore the union of the FIRST sets of Ynjn
, . . . , Ynnn

:

Rn =
k = jn

∪
nn

FIRST (Ynk )

However, in general there may be no token behind the location of the error which is
member of the local recovery set Rn . Therefore, the productions pn −1, . . . , p 1 have to be taken
into account, too. Parsing can continue at all symbols not analyzed yet:

Yn −1,jn −1
... Yn −1,nn −1

...
Y 2j 2

... Y 2n 2

Y 1j 1
... Y 1n 1

Therefore in general we need all local recovery sets Ri :

Ri =
k = ji

∪
ni

FIRST (Yik ) i = 1, . . . , n

The global recovery set R is the union of all involved local recovery sets:

R =
i =1
∪

n
Ri

The global recovery set R is used to stop skipping of tokens. Tokens are skipped until one
is reached that is member of R . This location is called a restart point. This method of recovery
terminates because only symbols not yet analyzed are considered as potential restart points.
Their processing is contained in the current call hierarchy.

In extreme cases the complete rest of the input is skipped. To guarantee termination of
skipping, a special token for end of file (sEof) has to be member of R . This is assured by aug-
menting the grammar by the following rule:

p 0: X 0 → X 1 sEo f

where X 1 is the original and X 0 is the new start symbol of the grammar.

The definition of R can be modified in some ways. First, if the symbol Z is a terminal it
can be included in R in order to improve the behaviour of error recovery in case of superfluous
tokens. Second, it is possible to exclude some elements (except sEof) from R without causing
the recovery to fail. However, its behaviour becomes more coarse because eventually more
tokens are skipped. If only sEof remains in R , we arrive at panic mode: after skipping the rest
of the input no more errors can be found.

The computation of the global recovery set R can consume a considerable amount of run
time. For efficiency reasons, we found the following solution quite satisfactory: The local
recovery sets can be computed at generation time. For every right-hand side symbol (or position)
a local recovery set is computed and stored. The global recovery set has to be computed at run
time, as it depends on the current call hierarchy. The union of the local recovery sets is com-
puted only in the case of an error. As long as there is no error, it suffices to maintain a simple
data structure that allows to compute the union on demand.

If the local recovery sets are stored in an array of sets it is enough to know the index of a
set in this array. The global restart set is represented as a list of such indices. This list allows to
effectively compute the global restart set whenever needed.
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A list representing the global restart set is passed via a second parameter to every pro-
cedure. In case of an error, the local recovery set is added to the list and then the real set union is
accomplished. Before calling another procedure to analyze a nonterminal, the list is extended by
a suitable element. The list elements are declared as local variable of the procedures. This way,
allocation and deallocation of storage is for free. For details see Fig. 3 as well as Appendix 1.

4.2.3. Error Repair

Every incorrect program is repaired (or transformed) into a syntactically correct program.
Error repair is accomplished by skipping tokens as described above and by imaginary inserting
tokens. This insertion is realized relatively easy by continuing parsing as nothing would have
happened. Whenever a terminal is expected which is different from the current input token, it is
reported as inserted. Whenever alternatives are analyzed and the current input token is member
of none of the possible FIRST sets, an arbitrary branch, which is non-recursive, is selected. The
restriction to non-recursive branches is necessary to guarantee termination. There always exists a
non-recursive branch as long as the grammar is reduced. Semantic actions are executed during
error repair as usual.

Error recovery and error repair is combined in mainly three procedures to handle literals,
terminals, and alternatives or EBNF constructs, respectively (see Appendix 2). To avoid
superfluous error messages the parser knows two modes. In normal mode errors are reported,
tokens are skipped, and the mode is changed to repair mode. In repair mode neither errors are
reported nor tokens are skipped. Instead the inserted tokens are reported. The mode is switched

TYPE tUnionPtr = POINTER TO tUnion;
TYPE tUnion = RECORD (* type for list elements *)

GlobalRecoverySet : tUnionPtr;
LocalRecoverySet : SHORTCARD;

END;
(* procedure for a nonterminal *)

PROCEDURE Module (GlobalRecoverySet: tUnionPtr; VAR Module0: tParsAttribute);
VAR
Union : tUnion;
Ident1: tScanAttribute;
Block1: tParsAttribute;
...

BEGIN
Union.GlobalRecoverySet := GlobalRecoverySet;

IF Token # sMODULE THEN (* analysis of a literal *)
RecoveryLiteral (sMODULE, 138, GlobalRecoverySet);

ELSE
Token := GetToken (); IsRepairMode := FALSE;

END;

IF Token # sIdent THEN (* analysis of an attributed terminal *)
RecoveryTerminal (sIdent, 138, GlobalRecoverySet, Ident1);

ELSE
Ident1 := Attribute; (* receive attribute from scanner *)
Token := GetToken (); IsRepairMode := FALSE;

END;

Union.LocalRecoverySet := 57; (* analysis of a nonterminal *)
Block (SYSTEM.ADR (Union), Block1);

END Module;

Fig. 3: Scheme of the Code for Error Recovery
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back to normal when the analysis of a terminal is successful. Then error recovery is finished and
parsing continues normally.

The local variable Union is a list element for the representation of the global recovery set.
It suffices to append this element to the list once in every procedure. Before calling another pro-
cedure to analyze a nonterminal the index of a local recovery set is assigned to the list element
(here: 57). The extended list is passed as parameter. The procedures for error recovery called
ErrorRecovery, RecoveryTerminal, and RecoveryLiteral are given in Appendix 2. They are
called only in case of syntax errors. As errors are considered to be a rare event, these procedures
do not have to care about efficiency. Their parameters describe the expected token (here: sMO-

DULE and sIdent), the index of the local recovery set (here: 138), and the global recovery set.
For attributed terminals a fourth parameter specifies the variable receiving the attributes from the
scanner. The interface to the scanner consists primarily of the following objects: the procedure
GetToken returns the next input token, the global variable Attribute contains the attributes of the
current token, and the procedure ErrorAttribute (see Appendix 2) is called by the parser to get
attribute values for synthesized tokens.

5. Related Work

Much work has been published about error recovery. We limit this discussion on giving
reasons for our solution and mention a few similar methods. The design of our error recovery
was guided by the following requirements:

- automatic derivation of error recovery from the grammar

- efficient parsing in terms of run time

- provision of error repair

Efficiency implies a backtrack-free strategy and asks for a clever implementation.
Automatic derivation and a backtrack-free strategy imply more or less the definition of recovery
sets as given above.

We consider error repair to be important because error recovery should not consider syntac-
tical aspects only. Syntax analysis is usually combined with semantic analysis. Although error
repair might not transform an error the way the programmer originally intended, it does
transform every erroneous program into a syntactically correct one with the consequence that
only syntactically correct information is passed to semantic analysis. This allows great
simplifications in the latter because it does not have to care about syntax errors.

The definition for the recovery sets given above is not new as it is somehow inherent in the
problem. Similar definitions have been presented previously e. g. by [Iro63, ReM85, SMM84].
Hand-written recursive descent parsers usually implement similar designs [Wir86]. The advan-
tages of our solution are the provision of error repair and the efficient implementation of error
recovery. The compiler generators Coco [ReM85] and Coco/R [M\90] use the same strategy for
error recovery but do not provide error repair. The efficiency of the parsers generated by Coco/R
is comparable to the efficiency of our method. Using Coco/R, error recovery has to be tailored
by giving simple directives. Ell does not require any user engagement and produces error
recovery automatically. Appendix 4 presents the behaviour of our method applied to the exam-
ple program used in [M\90]. The rather long listing of messages is the direct output of the infor-
mation provided by the parser. The final layout of the messages can be easily adapted to the
ideas of the user.

6. Implementation Issues

Parsing is implemented using recursive procedures as outlined above. The operators of
extended BNF are mapped to statements of the target language as given in Appendix 1. In
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obvious cases simple optimizations are exploited. For example the checks for terminals and
literals can be omitted in some cases.

More sophisticated implementation decisions concern the CASE/switch statements and the
test for set membership. If C is used as target language, it turned out that many C compilers
optimize switch statements in favour of storage. If the set of case labels is non-compact, a sorted
list of values and addresses is generated. A run time system routine performs binary search in
this table in order to map the current switch value to the address of a case branch. To trick the C
compiler, Ell inserts dummy labels to make the set of case labels compact. Then the C compilers
use a jump table which executes considerably faster. Generating compact sets of case labels
improved the over all run time of the parsers by 30%.

Sets are implemented as bit vectors if they contain more than one element. In general an
array of memory words is needed to store the bits of one set (see Fig. 4). The membership test
would be coded as follows:

Seti: ARRAY [0..k] OF BITSET;

e ∈ Seti ≡ (e MOD 32) IN Seti [e DIV 32]

On a MC 68020 processor this produces the following six machine instructions including two
divide instructions:

movl _e:l,d1
divsll #0x20,d2:d1
movl _e:l,d3
divsl #0x20,d3
movl (_Set:l,d3:w:4),d3
btst d2,d3

It is much more advantageous to store the sets vertically instead of horizontally as above.
32 sets can be stored side by side in a sufficient number of words (see Fig. 5). The membership
test is coded as follows:

0 1 e / 32 k

0

1 word (BITSET)

element (bit)

i set

n

0 e mod 32 31

Fig. 4: horizontal set
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0 i 31

0

1

word (BITSET)

e element (bit)

set

m

Fig. 5: vertical set

Set: ARRAY [0..m] OF BITSET;

e ∈ Seti ≡ i IN Set [e]

Note, that i is a constant. Now on a MC 68020 processor two machine instructions suffice:

movw _e+2:l,d4
btst #4,(_Set:l,d4:w:4)

If the global variables e and Set could be stored in registers, the membership test could be done
even with one machine instruction, only:

btst #4,a0@(0,d0:l)

This implementation of the membership test has been previously described in [Gra88b]. In our
case, the two ways of the membership test account for a difference of another 30% in the over all
run time of the parser.

7. Summary

We presented the interesting features of the recursive descent parser generator Ell from the
user’s point of view and from the implementation aspects. The outstanding features of Ell are
the L-attribution mechanism, its ability to handle non LL(1) grammars, and its automatic and
comfortable error handling, which includes error reporting, recovery, and repair.

The generated parsers are extremely efficient in terms of run time. For example a Modula-2
parser runs at a speed of 55,000 tokens per second or 900,000 lines per minute on a MC 68020
processor (excluding scanning). The size of the parser is 25 K bytes and the run time of the gen-
erator is 10 seconds.
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Appendix 1: Scheme of the Code Generated for EBNF Constructs

(* Literal t *)
IF Token # t THEN RecoveryLiteral (t, Recover(t), GlobalrecoverySet);
ELSE Token := GetToken (); IsRepairMode := FALSE;
END;

(* Terminal t (with attribute ti) *)
IF Token # t THEN RecoveryTerminal (t, Recover(t), GlobalrecoverySet, ti);
ELSE ti := Attribute; Token := GetToken (); IsRepairMode := FALSE;
END;

(* Nonterminal X (with attribute Xi) *)
Union.LocalRecoverySet := Recover(X); X (SXSTEM.ADR (Union), Xi);

LOOP (* Optional part X = [ Y ] *)
IF Token ∈ FIRST (Y) THEN <Y> EXIT;
ELSIF Token ∈ FOLLOW (X) OR IsRepairMode THEN EXIT; END;
ErrorRecovery (Expected (X), Recover (X), GlobalRecoverySet);

END;

LOOP (* Iteration X = Y * or X = { Y } *)
IF Token ∈ FIRST (Y) THEN <Y>
ELSIF Token ∈ FOLLOW (X) OR IsRepairMode THEN EXIT;
ELSE ErrorRecovery (Expected (X), Recover (X), GlobalRecoverySet);
END;

END;

LOOP (* Iteration X = Y + or X = Y { Y } *)
<Y>
IF Token ∉ FIRST (Y) THEN
IF Token ∈ FOLLOW (X) THEN EXIT; END;
ErrorRecovery (Expected (X), Recover (X), GlobalRecoverySet);
IF Token ∉ FIRST (Y) THEN EXIT; END;

END;
END;

LOOP (* Iteration X = Y || Z or X = Y { Z Y } *)
<Y>
IF Token ∉ FIRST (Z) THEN
IF Token ∈ FOLLOW (X) THEN EXIT; END;
ErrorRecovery (Expected (X), Recover (X), GlobalRecoverySet);
IF Token ∉ (FIRST (Y) ∪ FIRST (Z)) THEN EXIT; END;

END;
<Z>

END;

LOOP (* Alternative = X = Y1 | ... | Yn *)
CASE Token OF
| FIRST (Y1) & FOLLOW (Y1): <Y1> EXIT;

...
| FIRST (Yn) & FOLLOW (Yn): <Yn> EXIT;
ELSE (* Yd (1 <= d <= n): default alternative for error case *)

(* duplication of one of the above *)
IF IsRepairMode THEN <Yd> EXIT; END;
ErrorRecovery (Expected (X), Recover (X), GlobalRecoverySet);

END;
END;
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Appendix 2: Procedures for Error Recovery

TYPE tUnionPtr = POINTER TO tUnion;
TYPE tUnion = RECORD (* type for list elements *)

GlobalRecoverySet : tUnionPtr;
LocalRecoverySet : SHORTCARD;

END;
TYPE tSet = ARRAY [0..Upb] OF BITSET; (* type for bit sets *)

VAR SetMemory : ARRAY [0..169] OF tSet; (* storage for horizontal sets *)

(* test for set membership *)
PROCEDURE IsElement (Set: tSet; Element: SHORTCARD): BOOLEAN;
BEGIN
RETURN Element MOD BitsPerBitset IN Set [Element DIV BitsPerBitset];

END IsElement;
(* compute global recovery set and skip tokens *)

PROCEDURE SkipTokens (LocalRecoverySet: SHORTCARD; GlobalRecoverySet: tUnionPtr);
VAR RecoverySet: tSet; i: SHORTCARD;
BEGIN
RecoverySet := SetMemory [LocalRecoverySet];
INCL (RecoverySet [0], sEof);
WHILE GlobalRecoverySet # NIL DO
FOR i := 0 TO Upb DO RecoverySet [i] :=
RecoverySet [i] + SetMemory [GlobalRecoverySetˆ.LocalRecoverySet] [i];

END;
GlobalRecoverySet := GlobalRecoverySetˆ.GlobalRecoverySet;

END;
WHILE NOT IsElement (RecoverySet, Token) DO
Token := GetToken ();

END;
ErrorMessage (RestartPoint, Information, Line, Column);
IsRepairMode := TRUE;

END SkipTokens;

PROCEDURE ErrorRecovery (ExpectedSet : SHORTCARD;
LocalRecoverySet : SHORTCARD;
GlobalRecoverySet: tUnionPtr);

BEGIN
IF NOT IsRepairMode THEN
INC (ErrorCount);
ErrorMessage (SyntaxError, Error, Line, Column);
ErrorMessageI (ExpectedSymbols, Information, Line, Column, TokenSet,

SYSTEM.ADR (SetMemory [ExpectedSet]));
SkipTokens (LocalRecoverySet, GlobalRecoverySet);

END;
END ErrorRecovery;
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PROCEDURE RecoveryTerminal (Expected : SHORTCARD;
LocalRecoverySet : SHORTCARD;
GlobalRecoverySet: tUnionPtr;

VAR RepairAttribute: tScanAttribute); (* for terminals only *)
BEGIN
IF NOT IsRepairMode THEN
INC (ErrorCount);
ErrorMessage (SyntaxError, Error, Line, Column);
ErrorMessageI (ExpectedSymbols, Information, Line, Column, Symbol,

SYSTEM.ADR (Expected));
SkipTokens (LocalRecoverySet, GlobalRecoverySet);

END;
IF Token # Expected THEN
ErrorMessageI (SymbolInserted, Repair, Line, Column, Symbol,

SYSTEM.ADR (Expected));
ErrorAttribute (Expected, RepairAttribute); (* for terminals only *)

ELSE
RepairAttribute := Attribute; (* for terminals only *)
IF Token # sEof THEN Token := GetToken (); END;
IsRepairMode := FALSE;

END;
END RecoveryTerminal;

PROCEDURE ErrorRecoveryLiteral (Expected : SHORTCARD;
LocalRecoverySet : SHORTCARD;
GlobalRecoverySet: tUnionPtr);

(* like ErrorRecoveryTerminal except as marked above *)

Appendix 3: Attribute Grammar to Compute the Recovery Sets

N nonterminal
E expression
t terminal or literal
R recovery set
In, Out temporary attributes

N = E {E.In := Ø; }
E = t {E.R := FIRST (t) ∪ E.In; E.Out := E.R; }
E = N {E.R := E.In; E.Out := FIRST (N) ∪ E.In; }
E = [ E1 ] {E1.In := E.In; E.R := FIRST (E1) ∪ E.In; E.Out := E.R; }
E = E1 * {E1.In := E.In; E.R := FIRST (E1) ∪ E.In; E.Out := E.R; }
E = E1 + {E1.In := E.In; E.R := FIRST (E1) ∪ E.In; E.Out := E.R; }
E = E1 || E2 {E1.In := FIRST (E2) ∪ E.In; E2.In := FIRST (E1) ∪ E.In;

E.R := FIRST (E1) ∪ FIRST (E2) ∪ E.In; E.Out := E.R; }
E = E1 |...| En {E1.In := E.In; ... En.In := E.In;

E.R := FIRST (E1) ∪ ... ∪ FIRST (En) ∪ E.In; E.Out := E.R; }
E = E1 E2 {E2.In := E.In; E1.In := E2.Out; E.R := E1.Out; E.Out := E.R; }
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Appendix 4: Example of Error Recovery

Source Program:

1 MODULE Error;
2 CONST M := 10, N = 100 X = 10;
3 VAR , a, b, c;
4
5 PROCEDURE P;
6 BEGIN
7 s := 0; a = 5 * (b - 1 END;
8
9 BEGIN
10 > a > b;
11 WHILE a DO
12 BEGIN > b; - c := 0;
13 WHILE a > 0 BEGIN
14 IF ODD a c := c * - b;
15 b := 2 * b a := a /2
16 END;
17 P := 0; P; 666;
18 END .

Error Messages:

2, 9: Error syntax error
2, 9: Information expected symbols: ’=’
2, 12: Information restart point
2, 12: Repair symbol inserted : ’=’
2, 14: Error syntax error
2, 14: Information expected symbols: ’;’
2, 16: Information restart point
2, 16: Repair symbol inserted : ’;’
2, 25: Error syntax error
2, 25: Information restart point
2, 25: Repair symbol inserted : ’;’
3, 5: Error syntax error
3, 7: Information restart point
3, 14: Error syntax error
3, 14: Information expected symbols: ’:’
3, 14: Information restart point
3, 14: Repair symbol inserted : ’:’
3, 14: Repair symbol inserted : Ident
7, 13: Error syntax error
7, 13: Information expected symbols: ’(’ ’:=’ ’;’
7, 19: Information restart point
7, 26: Error syntax error
7, 26: Information restart point
7, 26: Repair symbol inserted : ’)’
7, 29: Error syntax error
7, 29: Information expected symbols: Ident
7, 29: Information restart point
7, 29: Repair symbol inserted : Ident
10, 3: Error syntax error
10, 3: Information expected symbols: Ident ’;’ ’CASE’ ’EXIT’ ’FOR’ ’IF’ ’LOOP’

’REPEAT’ ’RETURN’ ’WHILE’ ’WITH’
10, 5: Information restart point
10, 7: Error syntax error
10, 7: Information expected symbols: ’(’ ’:=’ ’;’
10, 9: Information restart point
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10, 9: Repair symbol inserted : ’;’
12, 5: Error syntax error
12, 5: Information expected symbols: Ident ’;’ ’CASE’ ’EXIT’ ’FOR’ ’IF’ ’LOOP’

’REPEAT’ ’RETURN’ ’WHILE’ ’WITH’
12, 13: Information restart point
12, 16: Error syntax error
12, 16: Information expected symbols: Ident ’;’ ’CASE’ ’EXIT’ ’FOR’ ’IF’ ’LOOP’

’REPEAT’ ’RETURN’ ’WHILE’ ’WITH’
12, 18: Information restart point
13, 17: Error syntax error
14, 7: Information restart point
14, 7: Repair symbol inserted : ’DO’
14, 14: Error syntax error
14, 14: Information restart point
14, 14: Repair symbol inserted : ’THEN’
14, 16: Error syntax error
14, 16: Information restart point
14, 16: Repair symbol inserted : ’;’
14, 25: Error syntax error
14, 25: Information expected symbols: Ident Integer Real String ’(’ ’{’ ’NOT’
14, 25: Information restart point
14, 25: Repair symbol inserted : Integer
15, 18: Error syntax error
15, 18: Information restart point
15, 18: Repair symbol inserted : ’;’
17, 16: Error syntax error
17, 16: Information expected symbols: Ident ’;’ ’CASE’ ’EXIT’ ’FOR’ ’IF’ ’LOOP’

’REPEAT’ ’RETURN’ ’WHILE’ ’WITH’
17, 19: Information restart point
18, 7: Error syntax error
18, 7: Information restart point
18, 7: Repair symbol inserted : ’END’
18, 7: Repair symbol inserted : ’END’
18, 7: Repair symbol inserted : Ident
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